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Abstract
We formulate a density functional approach for arbitrarily branched liquid-
crystalline (LC) heteropolymers consisting of elongated rigid rods coupled
through elastic joints. The theory exactly accounts for the energetic and entropic
single-chain effects, whereas the interchain excluded volume effects are treated
within the Onsager approximation. We apply the theory to finite-length main-
chain LC polymers composed of rigid mesogens coupled by flexible spacers
of finite length, modelled initially as chains of thin rods. The theory then
allows an easy passage to the wormlike chain limit for the spacers. Employing
a bifurcation analysis we analytically obtain the stability boundaries of the
isotropic phase towards the nematic liquid crystalline phase, as a function of
the relative size of the mesogens with respect to the spacers and the spacer
flexibility. From the same analysis we also obtain the distribution of the
incipient nematic ordering at the spinodal density as a function of position along
the chain, including the end-effects.

1. Introduction

A generic mesogen, or liquid-crystal (LC) forming molecule, is an elongated molecule
with a relatively stiff molecular core. If such molecules are incorporated as subunits in a
polymeric compound, one can obtain a substance that couples the optical properties of an LC
(birefringence, field orientability) with the mechanical and processing properties of polymers.
Over the years these so-called LC polymers have received widespread attention, also due to
their potential for applications [1–6].

There are two main classes of LC polymers; those where the mesogenic subunits are
incorporated within a linear polymeric structure are called main-chain LC polymers, and those
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which have the mesogenic units attached to the side of a polymer backbone are called side-
chain LC polymers. An essential concept in LC polymeric systems is the insertion of ‘spacer’
groups to spatially separate the mesogens. This was first realized by Finkelmann et al [7–9]
for side-chain LC polymers, but later also applied to main-chain LC polymers. These spacers
are usually aliphatic chains, which, being rather flexible, act to decouple the rigid mesogenic
groups from the backbone polymer (side-chain LC polymers) or from each other (main-chain
LC polymers). The spacers basically allow the mesogenic groups to order orientationally
relatively unhindered, while at the same time the polymer chain as a whole is not frustrated
greatly in exploring different conformations and thus maximizing its entropy. This means that
in LC polymeric phases the spacers (and polymeric backbone, if present) will be necessarily
less ordered than the mesogens.

Through the pioneering work by Onsager [10], Flory [11], and Maier and Saupe [12],
we possess a thorough theoretical understanding of LC behaviour in simple rodlike molecules.
The task of modelling LC polymers, however, is a much more challenging one. The individual
polymers have many degrees of freedom and are statistical systems in their own right, whose
behaviour, even in the absence of interactions with other molecules, involves both entropic
and energetic aspects. The latter are due to the steric interactions between neighbouring
components, which translate into a (temperature dependent) resistance to bending. As it turns
out, the degree of flexibility of the polymers is a key ingredient in describing phase behaviour
of LC polymers.

The seminal theories aimed at modelling main-chain LC polymers are due to Khokhlov
and Semenov [13, 14] and Warner and co-workers [15, 16]. These works focused strongly on
the molecular flexibility, by treating the polymers as wormlike chains, i.e. continuous space
curves with a resistance to bending distributed homogeneously along their length.

However, real main-chain LC polymers are heterostructures, consisting of components
with different spatial dimensions and different degrees of flexibility. Several lattice model
approaches have been proposed in which these types of details were incorporated [17–21]. A
typical artifact of these approaches is the appearance of nematic–nematic transition between
phases with a weak and a strong degree of order.

Two rather similar off-lattice approaches to treating a main-chain LC polymer composed of
rigid rods coupled by elastic spacers were developed by Yurasova and co-workers (YC) [22–24]
and by Wang and Warner (WW) [25]. Both these theories employ a Maier–Saupe-like mean-
field approach and assume the spacers to be wormlike chains. They differ in their treatment of
the statistics of the spacers, YC opting for the so-called spherical approximation [26], whilst
WW employ the arguably more powerful spheroidal wavefunction expansion [15]. In both
cases, however, only the average degree of order of the spacers is determined and the chains
are implicitly infinite in length, so neither local variations in ordering along the polymer nor
end-effects due to finite polymer length are addressed.

In principle, more detailed information could come from simulations. However,
simulations of genuine LC polymers (with hundreds to thousands of repeating units) are beyond
present-day computational capabilities. On the one hand, a number of simulations have been
reported which focus on larger systems and longer timescales consisting of structurally simple
LC polymers interacting via coarse-grained ‘simple’ potentials [27–30]. A typical example we
would like to mention is the work of Lyulin et al [29], where main-chain LC polymers are
modelled as repeating units of Gay-Berne mesogens with five to eight Lennard-Jones atoms
acting as connecting spacers. They were able to simulate 64 polymers with the degree of
polymerization being 10 for about 10 ns, and find both an isotropic and a nematic phase. On
the other hand, there are a few simulations using more realistic atomic-level potentials, but in
these the systems were necessarily smaller and the timescales correspondingly shorter [31, 32].
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Our aim is to set up a general framework for modelling LC polymer behaviour that is
(i) detailed enough to discuss features caused by the local connectivity of the components,
(ii) allows for structural heterogeneity and (iii) still simple enough to allow the extraction of the
phase behaviour as function of a limited number of parameters. In this way we hope to address
some of the limitations of the theoretical and computational approaches discussed above and
provide a tractable tool for rational prediction of LC polymer properties.

Although most LC polymers are thermotropic, with main exceptions being biopolymers
like DNA or bio-aggregates like viruses, we nevertheless choose to develop a density functional
theory based on the polymeric components being hard rigid rods. The arguments for this choice
are twofold. Firstly, anisotropic short range repulsions are the major determinant of fluid state
structure and form the basis of the modern theory of simple liquids. Additional energetic
interactions can, if required, always be added to a hard core system in a perturbative manner.
Secondly, as we will treat the excluded volume interactions in the Onsager approximation,
we will obtain a theory that is formally equivalent to a Maier–Saupe-like mean-field theory
for softer potentials, if one neglects the effects of compressibility. This equivalence can
be used to map the results of the purely lyotropic case pursued here to the thermotropic
case.

Our model LC polymers are composed of elongated hard rigid cylindrical rods. Different
types of rods are distinguished on the basis of their dimensions (length and width). These
rods can be linked to each other and with each link we associate a bending potential which
can depend on the type of rods being linked. A major novelty of our approach is that we
allow multiple links to any rod, thus creating complex topologies. As it turns out we are
still able to take into account all single polymer degrees of freedom exactly even for arbitrary
branched polymers, as long as there are no closed loops in the structure. The resultant class
of ‘treelike’ polymers encompasses both side-chain LC polymers as well as LC dendrimers.
An interesting precursor to our work, unknown to us at the time of writing, is the paper by
Stott and Petschek [33], who consider both random and regular three-functional dendrimers
formed from identical LC moieties connected by orientational springs, mimicking the presence
of spacer chains. Their formalism already captures the essence of the generalization to branched
structures, albeit in a less generic framework and without treating the spacer groups on an equal
footing with the other chain components.

We have already presented a restricted version of the theory applied to linear
homopolymers in [34], while a specific application to side-chain LC polymers was briefly
addressed in [35]. The purpose of the present work is to present the general theory and the
details of its application to a generic main-chain LC polymer composed of two components,
mesogens and spacers, and a side-chain LC polymer with three components (backbone, side-
group spacers and mesogens). For length reasons, however, we relegate the discussion of the
latter part to a companion paper [36]. Our focus is on analytical results regarding the location
of phase boundaries and the distribution of order along the polymers. To this end we employ
the tools of bifurcation analysis extensively.

The outline of the paper is as follows. In section 2, we first set up the model and the
appropriate statistical mechanical formalism. We then deduce the self-consistency equations
describing the stationary phases and discuss the conditions for phase equilibrium. We show
that the problem complexity is dramatically reduced by projecting on the subsets of segments
of a specific type. We then turn to a generic form of the bifurcation equations, again stressing
the notion of ‘type averaging’. In section 3 we take on the application to a model main-chain
LC polymer, discussing the model parameters and how to take the wormlike chain limit for the
spacers. We go on to present the bifurcation analysis and its results. We close with a discussion
and outlook.
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Figure 1. A branched heterochain of rodlike segments. The explicit example of a segment labelling
is added to show that, in the case of branched chains, segments with non-consecutive labels may
still be nearest neighbours (like 2 and 7).

2. General LC heteropolymers

2.1. Model and formalism

2.1.1. Free energy functional and stationarity equation. The system we consider is a fluid
of N identical (possibly) branched polymer chains in a volume V . Each chain is composed
of M rigid cylindrically symmetric rodlike segments of R different types. The different types
are distinguished by a label τ with τ ∈ {1, . . . , R}. A segment of type τ has a length lτ and a
diameter dτ , where it is assumed that lτ � dτ . Each individual segment is labelled by an index
m with m ∈ {1, . . . , M}. To indicate that a given segment is of a certain type we will use the
convenient rather than mathematically precise notation m ∈ τ . If two segments m and m ′ are
linked in the polymer, they become neighbours, which we express by the notation (m, m ′). Any
segment may link to more than two neighbouring segments, thus allowing arbitrary branched
molecular structures, but we explicitly exclude the occurrence of closed loops of segments.
The reason for the latter constraint will be discussed in section 2.1.2. The orientation of a
segment is described by a unit vector ω̂m pointing along its symmetry axis. The configuration
ξ of a single polymer is specified by the position R of its centre of mass and its conformation
Ω = (ω̂1, . . . , ω̂M), being the orientations of all segments. A schematic example of the type
of branched heteropolymer we treat is given in figure 1.

The method of choice for dealing with order–disorder phenomena in classical liquids is
density functional theory (DFT), which states that (i) the free energy can be formulated as
a functional of the single-molecule (=chain) configuration distribution function ρ(1)(ξ ) and
(ii) the equilibrium phase can be determined from minimizing this functional [37]. The
specific choice of approximate density functional we adopt here is a second virial, or Onsager,
approximation at the level of the chains [34],

βF [
ρ(1)

] =
∫

dξ ρ(1)(ξ )
[
log

(VTρ(1)(ξ )
) − 1

] + β

∫
dξ ρ(1)(ξ)U(ξ )

− 1
2

∫ ∫
dξ dξ ′ ρ(1)(ξ)ρ(1)(ξ ′)�(ξ , ξ ′), (1)

where VT is the so-called thermal volume, being the product of the relevant de Broglie
wavelengths, and β = 1/kBT with kB Boltzmann’s constant and T the temperature. The
two successive non-ideal terms in this free energy represent the internal energy of the chains
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due to the bending potential U and an entropic interaction term due to the excluded volume
interactions between the segments which is mediated by �, the chain–chain Mayer function.
The integrals are over all configuration space,

∫
dξ = ∫

dR dΩ = ∫
dR

∏
m dω̂m , and ρ(1)

is normalized to the number of particles,
∫

dξ ρ(1)(ξ ) = N . In this paper we only consider
spatially homogeneous phases and therefore set ρ(1)(ξ) = ρ f (Ω), with ρ = N/V the chain
number density and f (Ω) the conformational distribution function of the whole chain (CDF).
Necessarily, the CDF has the following normalization:

∫
dΩ f (Ω) = 1.

We assume that the internal energy of the chain is entirely due to the bending potential
operative between each linked pair of segments along the chain, hence

U(Ω) =
(m,m′)∑

m,m′
um,m′(ω̂m · ω̂m′). (2)

where the summation is over all segments m and m ′ in the chain which are nearest neighbours
(notation: (m, m ′)). We do not specify the exact form of um,m′ at this point, but point out
that it may depend on the types of segments involved. Global rotational symmetry dictates
its dependence on the orientations of the two linked segments through the inner product
ω̂m ·ω̂m′ = cos θm,m′ . Note that the internal energy of a chain only depends on its conformation
Ω and not on its position R. Note that the chosen form of the internal energy does not take
into account the potential interactions due to overlap between segments other than nearest
neighbours (which are effectively precluded from overlapping by the bending potential), so
that the chains are allowed to intersect themselves.

As our chains are composed of hard, impenetrable, rods, the pair potential v is infinity
when two chains overlap at any location and zero when they do not. The chain–chain Mayer
function thus is

�M(ξ , ξ ′) ≡ exp(−βv(ξ , ξ ′)) − 1 =
{

−1 if overlap

0 if no overlap.
(3)

Furthermore, realizing that the Mayer function is translationally invariant and as we are only
considering homogeneous phases, we can define the so-called excluded volume of two chains

E(Ω,Ω′) = −
∫

d(R − R′) �M(R − R′,Ω,Ω′). (4)

The excluded volume of two chains with arbitrary conformations, however, is too complicated
to calculate. We therefore approximate the chain–chain excluded volume with the sum over all
segment–segment excluded volumes

E(Ω,Ω′) =
∑

m,m′
em,m′ (ω̂m · ω̂m′), (5)

which for sufficiently elongated rods in fact is the first term in a systematic expansion of the
chain–chain excluded volume (see [34] for details and a justification of this approximation).
The segment–segment excluded volume depends on the type of segments involved and the
planar angle γ between them and is taken to be equal to the asymptotic form due to Onsager

em,m′ (ω̂m · ω̂m′) = eτ,τ ′(ω̂m · ω̂m′) = lτ lτ ′(dτ + dτ ′)| sin γ (ω̂m · ω̂m′)|, (6)

where m ∈ τ and m ′ ∈ τ ′.
Given the definitions (2) and (5), we can perform the spatial integrations in equation (1) to

obtain the free-energy functional per particle
βF[ f ]

N
= log (ρVT) +

∫
dΩ f (Ω)

[
log f (Ω) − 1

] + β

∫
dΩ f (Ω)U(Ω)

+ 1
2ρ

∫
dΩ dΩ′ f (Ω) f (Ω′)E(Ω,Ω′). (7)
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In thermodynamic equilibrium, the free energy is at a minimum and hence the functional must
be stationary. We therefore consider the variation of equation (7) with respect to the CDF,

δ

δ f (Ω)

βF
N

− βμ = 0 (8)

with the chemical potential μ playing the role of Lagrange multiplier needed to enforce
normalization. Eliminating μ from equation (8) yields the stationarity equation,

f (Ω) = Q−1[ f ] exp

[
−βU(Ω) − ρ

∫
dΩ′ f (Ω′)E(Ω,Ω′)

]
(9)

in which Q is the normalization factor,

Q[ f ] =
∫

dΩ exp

[
−βU(Ω) − ρ

∫
dΩ′ f (Ω′)E(Ω,Ω′)

]
. (10)

Because the chain–chain interaction term in our approximation, given by equation (5),
only involves pair-wise segment–segment terms, we can obtain a reduced description in terms
of single-segment orientational distribution function (ODF), which is defined as a ‘projection’
of the CDF onto a given segment,

fm(ω̂m) =
∫ ∏

k �=m

dω̂k f (Ω). (11)

With this definition we can rewrite equation (9) as a set of non-linear coupled self-consistency
equations for the ODFs,

fm(ω̂m) = Q−1
∫ ∏

k �=m

dω̂k

×
(k,k′ )∏

k,k′
wk,k′ (ω̂k, ω̂k′ )

∏

k

exp

[

−ρ
∑

k′

∫
dω̂

′ ek,k′ (ω̂k, ω̂
′
) fk′ (ω̂

′
)

]

. (12)

Here we have introduced the shorthand wk,k′ (ω̂k, ω̂k′ ) = exp[−βuk,k′ (ω̂k, ω̂k′ )] for the
Boltzmann weight associated with the segment–segment bending interaction. The product∏(k,k′ )

k,k′ runs over all segments k and k ′ that are nearest neighbours along the chain, which
we denote by the bracket (k, k ′).

To summarize, we mention that we have, either implicitly or explicitly, made three
major approximations: (i) the Onsager or second virial approximation for the chain–
chain interactions, (ii) multiple overlaps between two chains are not taken into account (a
consequence of the approximation equation (5)) and (iii) the chains are not self-avoiding
(equation (2)). Whilst it is beyond our present scope to fully discuss their validity, we point out
that these approximations are commonly made and widely considered to include most of the
essential physics, as least as far as bulk phase behaviour of polymer LCs is concerned [38, 39].

2.1.2. Local fields. At first sight the stationarity equation (12) appear to couple all the ODFs
of the chain in a non-local fashion. At this point, however, our assumption on the topology
of the chains, namely that, although allowed to be arbitrarily branched, they cannot contain
any closed loops i.e. are simply connected [40], becomes crucial. This allows us to rewrite
the stationarity equations in terms of local functions. These local functions are defined in
a recursive manner and the structure of our chains guarantees that these recursions are both
unique and finite. Specifically, for a given segment m we can write

fm(ω̂m) = Q−1e−βHm (ω̂m )

(m,m′)∏

m′
qm,m′(ω̂m) (13)
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where we have defined an effective (mean) field

βHm(ω̂m) = ρ
∑

m′

∫
dω̂

′ em,m′(ω̂m, ω̂
′
) fm′(ω̂

′
), (14)

which carries the effects due to the excluded volume interactions of the segment with other
chains. The functions qm,m′ code for the effects which are transmitted to the segment through
its links to other parts of the chain on which it resides. They are defined through the following
recursion relation:

qm,m′(ω̂m) =
∫

dω̂
′
m′ wm,m′ (ω̂m, ω̂

′
m′)e−βHm′ (ω̂′

m′ )
(m′,m′′)∏

m′′ �=m

qm′,m′′(ω̂
′
m′) (15)

in terms of the same type of function now operating on the neighbours of segment m. One
can follow these recursions along any branch of the polymer until one reaches a free end for
which one defines qm,end = 1, which implies the absence of any net influence. A similar
approach has often been applied in the theory of classical spin models on branching lattices
(for a paradigmatic example see [41]).

The function qm,m′(ω̂m) is in fact the partition function of that part of the whole chain
that is connected to m in the direction of m ′ under condition that the orientation ω̂m of the
‘root’ segment m is kept fixed. Equivalently, − 1

β
log qm,m′(ω̂m) is the potential of mean force

imposed on segment m due to that same part of the whole chain. Note that the functions qm,m′

are in general not symmetric in their labels; they depend specifically on the segment involved
and on the direction from which their influence comes. The number of factors qm,m′ acting
on a segment depends on its connectivity within the chain. It is equal to 2 for a segment in
a linear part of the chain, 1 for an end segment and 3 or more at a branching point. Finally,
we point out that for a fixed set of effective external fields, equations (13) and (15) are an
exact statement of the statistical mechanics of the isolated chains. It is in this sense that in our
approach all intrachain effects, except for self-overlaps, are accounted for exactly. The major
approximations involved enter through the definition of the effective field and its dependence
on the interchain interactions. It also shows that the statistical decoupling of different branches
leading out from a single segment, introduced as an assumption in [33], is in fact an exact
consequence of having only segment–segment interactions along the chains.

2.1.3. The isotropic and nematic phases. At low chain densities we expect the isotropic
phase to be the stable one. In fact, it is not hard to see that the isotropic phase, for which
fm(ω̂m) = 1/4π , is a solution to equation (12) at any density. In that case the normalization
constant, which is identical to the partition sum per chain, is equal to

Qiso = 4π

(
(k,k′ )∏

k,k′
w

(0)
k,k′

)

exp

[

− ρ

4π

∑

k,k′
e(0)

k,k′

]

, (16)

where w
(0)

k,k′ and e(0)

k,k′ are the zeroth-order Legendre coefficients of wk,k′ and ek,k′ respectively
(see equation (25)). At higher densities, we expect a uniaxially symmetric nematic phase to
appear. In this case the ODFs are only a function of a single polar angle θ , between the
segment axis ω̂m and the preferred axis n̂ of the phase, and can therefore be expanded in a
series of Legendre polynomials,

fm(θm) =
∞∑

n=0

2n + 1

4π
a(n)

m Pn(cos θm), (17)

where of course

a(n)
m = 2π

∫ π

0
dθ sin θ Pn(cos θ) fm(θ), (18)
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the factor 2π in front appearing due to the azimuthal integration (
∫

dω̂ = ∫ π

0 dθ sin θ
∫ 2π

0 dφ).
Furthermore, a(0)

m = 1 for all m (because fm is normalized and P0(cos θ) = 1) and
a(2n+1)

m = 0 for all n as the uniaxial nematic phase is inversion symmetric. The coefficients
a(2)

m , m = 1, . . . , M are the primary order parameters, as these are the lowest order coefficients
that differ between the isotropic and nematic phases.

The isotropic-to-nematic (I–N) transition generically is first order and will therefore
involve a density jump of the system from ρiso to ρnem. These coexistence densities can be
found by equating the pressure �iso = �nem and chemical potential μiso = μnem of the two
phases, which both can be determined from the free energy

β� = ρ2 ∂ (βF/N)

∂ρ
and βμ = βF

N
+ ρ

∂ (βF/N)

∂ρ
. (19)

In order to solve for the phase coexistence conditions, however, one needs to solve these
equations in conjunction with the solution of the self-consistency equations equations (12)
for the nematic phase. This is in general a challenging numerical task. In [34, 35], we
have numerically computed ODFs in the nematic phase for linear homopolymers and side-
chain polymers respectively. This is done by solving equations (13)–(15) by means of an
iteration procedure along the lines of [42] and explained in more detail for linear homopolymers
in [34]. In the following we will adopt a different approach, by performing a stability analysis
of equation (12) starting from the isotropic phase. This locates the so-called spinodal or
bifurcation point, the upper limit of stability of the isotropic phase, and a generally close upper
bound on the transition density, and provides explicit information on the way the various parts
of the polymer order. Moreover, it can be carried out fully analytically and yields additional
insight into the factors that determine the transition.

Finally, it is sometimes reported that there exist various kinds of (uniaxial) nematic phases
and first-order phase transitions between them in LC polymeric systems2. Nematic-to-nematic
(N–N) transitions, being a transition between two phases of the same symmetry, require a ‘van
der Waals’-like loop in the pressure. Such a loop can be found by locating the spinodal points,
ρ2∂�/∂ρ = 0. In our case we can compute the pressure explicitly from equations (7) and (19),

β� = ρ + 1
2ρ

2
∫ ∫

dΩ dΩ′ f (Ω) f (Ω′)E(Ω,Ω′)

= ρ + 1
2ρ

2
∑

m,m′

∫ ∫
dω̂ dω̂

′ fm(ω̂) fm′ (ω̂
′
)em,m′ (ω̂, ω̂

′
). (20)

This expression for the pressure shows that such spinodal points do not exist in this system, as
the integral in equation (20) always has a positive value. Consequently, there are no (direct)
N–N transitions for any type of LC polymers within our theory.

2.2. Bifurcation analysis

2.2.1. Bifurcation analysis at the segment level. In this section we proceed by studying
equation (12) by means of a stability analysis of the isotropic phase. For low densities, the
isotropic solution is the stable (and only) solution. Compressing the system, we arrive at
the spinodal density at which the isotropic phase becomes unstable and a nematic appears.
This density is also called the bifurcation density as at this point the low-symmetry solution,
which is the nematic, branches off from the high-symmetry isotropic solution. For a first order
transition, such as the I–N transitions discussed here, the bifurcation density yields an upper

2 In [18–20] N–N transitions are described in main chain LC polymers, in [43, 44] for side-chain LC polymers and
in [45] for dendrimers.
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bound on the density at which the thermodynamic transition takes place [46, 47]. Close to
the bifurcation point, the segment ODFs can be written as an isotropic distribution with an
infinitesimal nematic perturbation,

fm(ω̂m) = 1

4π
+ ε f (1)

m (ω̂m), (21)

where f (1)
m has nematic symmetry (see equation (17)) and ε is an arbitrarily small parameter.

Furthermore, we can assume without loss of generality that the f (1)
m are orthogonal with respect

to the isotropic solution, i.e.
∫

dω̂ f (1)
m (ω̂) = 0.

Inserting the form equation (21) into the stationarity equation (12) we can expand both
sides of the equation with respect to ε and collect terms of equal order. The zeroth-order
contributions reduce to an identity by construction. To first order we obtain the bifurcation
equation

f (1)
m (ω̂m) = − ρ

4π

∑

k

∫ ∏

j �=m

dω̂ j

( j, j ′)∏

j, j ′

w j, j ′(ω̂ j · ω̂ j ′)

w
(0)
j, j ′

∑

k′

∫
dω̂

′ ek,k′ (ω̂k · ω̂′
) f (1)

k′ (ω̂
′
) (22)

which, in spite of its seemingly complex structure, can be seen as a linear eigenfunction
problem with the density ρ being the eigenvalue and f (1)

m the eigenfunctions. Note that the
rightmost sum (over k ′) in equation (22) is the amplitude to first order in ε of the effective field
acting on segment k, since

βHk(ω̂k) = ρ

4π

∑

k′
e(0)

k,k′ + ερ
∑

k′

∫
dω̂

′ ek,k′ (ω̂k, ω̂
′
) f (1)

k′ (ω̂
′
). (23)

The first term in this expansion is a constant (independent of ω̂k) and hence irrelevant. Via
the Boltzmann flexibility weights w j, j ′ this field is being ‘passed on’ along the chain until it
reaches segment m, which is the ‘target’ segment appearing on the left side of the equation.
We therefore define a path Pk,m , which is the collection of all the pairs of nearest-neighbour
segments that form the shortest connection between k and m. Again, due to the restricted
topology of our chains, this path is uniquely defined. As an example, in figure 1, P4,8 =
{(4, 3), (3, 2), (2, 7), (7, 8)}. The Boltzmann flexibility weights w j, j ′ with ( j, j ′) ∈ Pk,m are
involved in passing on the field, whereas all others are not. Finally, there is another sum (over
k) in equation (22), because all the segments in the chain experience the infinitesimal effective
field, which eventually reaches segment m.

An important observation, which allows us to explicitly solve the bifurcation equations,
is that the integration kernels wk,k′ and ek,k′ appearing in equation (22) both have uniaxial
symmetry, so like the ODFs (see equation (17)) they can be expanded in Legendre polynomials,

[
wk,k′

ek,k′

]
(cos θ) =

∞∑

n=0

2n + 1

4π

[
w

(n)

k,k′

e(n)
k,k′

]
Pn(cos θ), (24)

with coefficients
[

w
(n)

k,k′

e(n)

k,k′

]
= 2π

∫ π

0
dθ sin θ Pn(cos θ)

[
wk,k′

ek,k′

]
(cos θ). (25)

Consequently, using the addition theorem for Legendre polynomials,

Pn(ω̂
′ · n̂) = 4π

2n + 1

n∑

p=−n

Y ∗
n,p(ω̂

′|ω̂)Yn,p(n̂|ω̂), (26)
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where Yn,p(â|ω̂) is a spherical harmonic in a frame where ω̂ defines the z-axis, we find that
both wk,k′ and ek,k′ acting as integration kernels map Pn onto Pn ,

∫
dω̂

′
[

wk,k′

ek,k′

]
(ω̂ · ω̂

′
)Pn(ω̂

′ · n̂) =
[

w
(n)
k,k′

e(n)
k,k′

]
Pn(ω̂ · n̂), (27)

i.e. the Pn are eigenfunctions of wk,k′ and ek,k′ . Turning back to equation (22), we can
now conclude that therefore Pn are also eigenfunctions of this integral equation, and hence
f (1)
m (ω̂m) = cm Pn(ω̂m · n̂) for some n̂. The amplitudes cm , which we will call the degree of

order at the bifurcation, measure the relative strength of the ordering tendency of the given
segment with respect to the other segments. They are defined up to a multiplicative constant.

We can now solve equation (22) by combining the above results in a step-by-step fashion.
First we consider the infinitesimal effective field,

∑

k′

∫
dω̂

′ ek,k′ (ω̂k · ω̂′
) f (1)

k′ (ω̂
′
) = Pn(ω̂k · n̂)

∑

k′
e(n)

k,k′ ck′ . (28)

Next, we carry out an integration over the Boltzmann flexibility weight (suppose that ( j, k) ∈
Pk,m ),
∫

dω̂ j
w j,k(ω̂ j · ω̂k)

w
(0)

j,k

∑

k′

∫
dω̂

′ ek,k′ (ω̂k, ω̂
′
) f (1)

k′ (ω̂
′
) = Pn(ω̂ j · n̂)

w
(n)

j,k

w
(0)

j,k

∑

k′
e(n)

k,k′ ck′ . (29)

This process continues until segment m is reached and in every integration a factor w
(n)
j, j ′/w

(0)
j, j ′

(with ( j, j ′) ∈ Pk,m ) is being picked up. All remaining Boltzmann flexibility integrations (with
( j, j ′) /∈ Pk,m ) simply yield w

(0)
j, j ′/w

(0)
j, j ′ = 1. Consequently,

∫ ∏

j �=m

dω̂ j

( j, j ′)∏

j, j ′

w j, j ′(ω̂ j · ω̂ j ′)

w
(0)

j, j ′

∑

k′

∫
dω̂

′ ek,k′ (ω̂k · ω̂
′
) f (1)

k′ (ω̂
′
)

= Pn(ω̂m · n̂)

(
∏

( j, j ′)∈Pk,m

w
(n)
j, j ′

w
(0)
j, j ′

)
∑

k′
e(n)

k,k′ ck′ . (30)

Finally, combining this with equation (22) yields

cm = − ρ

4π

∑

k

(
∏

( j, j ′)∈Pk,m

w
(n)
j, j ′

w
(0)

j, j ′

)
∑

k′
e(n)

k,k′ ck′ , (31)

where we have dropped the Pn(ω̂m · n̂) on both sides. Defining for notational purposes

W (n)
m,k =

∏

( j, j ′)∈Pk,m

w
(n)

j, j ′

w
(0)
j, j ′

(32)

we are left with the following set of linear equations:

cm = − ρ

4π

∑

k

W (n)

m,k

∑

k′
e(n)

k,k′ ck′ . (33)

Note that the linearity again shows that the normalization of the cm can be freely chosen.
The solution to equation (33) poses a diagonalization problem involving M × M matrices,
which would appear to be hard for any reasonably sized chain. Fortunately, there is additional
structure to this equation which allows a reduction to an R × R-dimensional problem, where R
is the number of different types of segments in the chain. As this number is typically limited,
we get a significant reduction in complexity. This is the topic of the following section.
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2.2.2. Bifurcation analysis at the type level. So far, the ODFs have been formulated for every
segment separately. However, often we are more interested in the average ODF of a certain
component, e.g. in the case of the main-chain LC polymers considered in the next part the
average mesogen ODF or the average spacer ODF. Therefore, we define the average ODF of a
certain type of segment in the following way:

fτ (ω̂) = 1

Mτ

∑

k∈τ

fk(ω̂), (34)

where Mτ is the number of segments of type τ in the whole chain. The sum in equation (34) is
over all segments of type τ .

Next, we use the fact that ek,k′ (ω̂ · ω̂′
) = eτ,τ ′(ω̂ · ω̂

′
) with k ∈ τ and k ′ ∈ τ ′, so

∑

k′
e(n)

k,k′ ck′ = 1

Mτ

∑

τ ′
Mτ Mτ ′ e(n)

τ,τ ′
1

Mτ ′

∑

k′∈τ ′
ck′

= 1

Mτ

∑

τ ′
Mτ Mτ ′ e(n)

τ,τ ′ cτ ′ (35)

which defines cτ . We also define two type dependent matrices

E (n)

τ,τ ′ = Mτ Mτ ′ e(n)

τ,τ ′ (36)

W (n)

τ,τ ′ = 1

Mτ Mτ ′

∑

k∈τ

∑

k′∈τ ′
W (n)

k,k′ , (37)

corresponding to the excluded volume and flexibility contributions respectively. With these
matrices, we can rewrite the eigenvalue equation (33) solely in terms of type dependent
quantities,

cτ = − ρ

4π

∑

τ ′
W (n)

τ,τ ′
∑

τ ′′
E (n)

τ ′,τ ′′ cτ ′′ , (38)

or in a convenient vector notation

c = − ρ

4π
W(n)E(n)c (39)

which is an R × R-dimensional matrix equation. Note that E(n) is simple to determine on
the basis of the segment–segment excluded volumes, but that W(n) explicitly depends on the
structure of the whole polymer and its calculation is generally more involved.

We can label the real eigenvalues λi of W(n)E(n) in such a way that λ
(n)

1 � λ
(n)

2 � λ
(n)

3 . . ..
The physically relevant bifurcation is the one with the lowest value of the density. Denoting
this density by ρ∗ we find

ρ∗ = − 4π

minn λ
(n)
1

= − 4π

λ
(2)
1

, (40)

where we assume, as is verified a posteriori as in practically all cases, that λ
(n)

1 will be most
negative for n = 2.3 The corresponding eigenvector c∗ yields the order distribution (over the R
different types) of the degree of order at the bifurcation and we usually normalize it by setting
one of its components, for a given type τ , to unity (which means the degree of order of the
remaining types is measured in units of that of τ ).

In some cases, when there are competing ordering tendencies, it may be not trivial to
determine the appropriate sign of c∗, as both +c∗ and −c∗ are eigenvectors. It can be found

3 If a mode different from n = 2 drives the spinodal, there should be a distinct physical cause. An example is
found in [48], where an isotropic fluid of so-called Onsager crosses becomes unstable with respect to a cubatic n = 4
perturbation, compatible with the cubic symmetry of the particles.
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Figure 2. A few units of a main-chain LC polymer.

by considering the components of the vector E(2)c, which must necessarily be positive to be
consistent with the positive alignment of the components of the polymer, i.e. the strongest
mesogens, that are driving the transitions. Such an ambiguous situation can for instance
occur in the case of side-chain LC polymers with mesogens in the backbone as well as
in the side-chains in the presence of bond angle constraints between the backbone and the
spacers. However, in this case, one should in principle also check for the existence of biaxial
nematic phases. This can be done by considering the second order of ε in the bifurcation
analysis [45, 49].

So far, we have obtained the bifurcation density ρ∗ as well as the distribution of the degree
of order over the various types at bifurcation cτp,∗. However, a final step in our programme is
still possible, which allows us to obtain distribution of the degree of order cm,∗ at the bifurcation
over all individual segments separately. This step requires a partial ‘type’ average, instead of a
full one as in equation (37), of the matrix W (2)

m,k

W (2)
m,τ ≡ 1

Mτ

∑

k∈τ

W (2)
m,k . (41)

When we combine this with equation (33), we obtain

cm,∗ = − ρ∗
4π

∑

τ

W (2)
m,τ

∑

τ ′
E (2)

τ,τ ′cτ ′,∗. (42)

Thus the the type order distribution cτ,∗ determined in the previous step can be used to compute
the order distribution cm,∗ by using equation (42). The calculation of the M × R-matrix, which
involves the evaluation of otherwise simple products along all paths from segments of a given
to type to the target segment, is readily performed in the case of regular polymer topologies, as
we will illustrate in the next part of this paper, where we perform this calculation for main-chain
LC polymers.

3. Main-chain LC polymers

3.1. Introduction

A generic main-chain LC polymers consists of rigid mesogens connected via more flexible
spacers in a linear fashion as depicted in figure 2. The mesogens provide the driving force
for the LC phase transitions, whereas the spacers act to decouple the mesogens from each
other. Still, the stiffness and the dimensions of the spacers can be of considerable influence
on the location of the phase transition. Also, in an LC phase some degree of ordering
will necessarily be imposed onto the spacers through the orientational interactions with the
mesogens as well as other spacers. To fully unravel these various aspects, we will therefore
study the simplest realization of a main-chain LC polymer, composed of just two types of
segments, using the formalism and the solution tool, i.e. bifurcation analysis, developed in
section 2. Although, initially, we describe the spacers as consisting of segmented chains, it
is actually more convenient to treat them in the so-called ‘wormlike chain limit’. We also
consider the case where the polymer becomes infinite in length, making contact with previous
mean-field approaches that have neglected end-effects. The results include the dependence of
the I–N bifurcation density on the model parameters and profiles of the incipient order along
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mesogen (M)
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Figure 3. A unit of a main-chain LC polymer.

the chain at the bifurcation. We conclude with a comparison to previous work by Yurasova and
co-workers [22–24] and Wang and Warner [25].

3.2. Model

3.2.1. Model parameters. Our simple model of a main-chain LC polymer consists of N
repeating units, each containing a single (MM = 1) rigid mesogen (M) and MS spacer (S)
segments (see figure 3). Hence, R = 2 and we set τ1 = S and τ2 = M. The mesogens
have dimensions lM and dM and their total number in the polymer is MM = NMM = N .
The spacer segments have dimensions lS and dS and the number of spacer segments in one
unit is MS, so the total number in the polymer is MS = NMS. Suppose for simplicity that
MS is even, so every unit consists of 1

2MS spacer segments, a mesogen segment and again
1
2MS spacer segments as depicted in figure 3. The segment label is m (or k) and runs along
the chain; m ∈ {1, . . . , M}, with M = N (MS + 1) the total number of segments. Every
(n(MS + 1) − 1

2MS)th segment (with n ∈ {1, . . . ,N } the label of a unit) is a mesogen; all
the others are spacer segments. Often, we also use the relative label s within a unit, so then
m = n(MS + 1) − 1

2MS + s, where s ∈ {− 1
2MS, . . . ,

1
2MS}.

We now turn to the interactions. Between nearest-neighbour segments within a polymer,
we use a generic bending potential which is locally harmonic in the bending angle around full
mutual alignment,

um,m+1(ω̂ · ω̂′
) = −JSω̂ · ω̂

′
. (43)

We assume this potential between all the spacer segments, but for simplicity also between
the spacer and the mesogen segments. This avoids the introduction of an additional model
parameter, at a small cost in generality. Finally, we recall the excluded volume between two
segments m and m ′ on different polymers

em,m′ (ω̂ · ω̂
′
) = lτ lτ ′(dτ + dτ ′)| sin γ (ω̂ · ω̂

′
)|, (44)

where m ∈ τ and m ′ ∈ τ ′.

3.2.2. Wormlike chains and infinite polymers. Following the seminal work of Khokhlov
and Semenov [14], the wormlike chain concept has been popular as a model for main-chain
LC polymers. Indeed, wormlike chains are conceptually simpler than segmented chains with
explicit bending potentials. We can transform our segmented chains into wormlike chains by
applying the so-called wormlike chain limit (WCL, discussed in more detail [34]). However,
as we want to keep the details of the differentiated molecular components in the case of the
main-chain LC polymers, we only apply the WCL to the spacers, and take the limits

lS → 0, β JS → ∞, MS → ∞, (45)

while keeping the following combinations of parameters constant:

PS = β JSlS M̄S = MS/β JS. (46)
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Here PS is the persistence length of the spacers and M̄S the length of the spacer with a single
repeat unit measured in units of the persistence [50]. The spacer segment labels become
continuous as well, m̄ = (m/M)M̄ and s̄ = (s/MS)M̄S (and therefore m, s → ∞). In
general, an overbar on a quantity refers to its appropriate value in the WCL. Apart from the
conceptual simplification, the WCL also reduces the number of model parameters by one;
lS, β JS,MS → PS,M̄S. The WCL can be also be applied straightforwardly on the level
of the bifurcation analysis (again, see [34]).

Typically, real main-chain LC polymers are very long (102–103 repeat units). Therefore
it can also be interesting to consider the polymer to be infinitely long. In this case, due to
translational symmetry along the chain, every unit is the same as its neighbour (and there are
no free end effects). We call this limit the infinite polymer limit (IPL),

N → ∞, ρ → 0 with ρN finite, (47)

where the polymer number density needs to be rescaled as well, as it is the mesogen density
ρN which drives the I–N transition. In this limit we lose yet another model parameter (N ).

Finally, we are free to adopt relative measures for the relevant lengths. As the dimensions
of the mesogens are not subject to either the WCL or the IPL, they are the most logical choice
to use as a reference. We therefore introduce the dimensionless spacer persistence length and
spacer segment thickness as

P̃S = PS/ lM and d̃S = dS/dM, (48)

and define the following dimensionless density:

η = 2l2
MdMρN . (49)

The result is that, after applying the WCL to the spacers, the finite-length main-chain LC
polymers we have introduced here are described by only four model parameters, MS, P̃S, d̃S

and N . If we consider infinitely long polymers, the dependence on N also drops out. In most
physical situations, d̃S is significantly smaller than one. In fact, we will frequently consider the
case d̃S = 0. This is an instructive limiting case, because while there are no contributions from
the SS interactions (there is no excluded volume between two zero-thickness spacers) the MS
excluded volume is not zero, so these zero-thickness spacers still contribute to spacer–mesogen
orientational coupling (equation (44)).

3.3. Bifurcation analysis

3.3.1. Bifurcation density. In this section we evaluate the elements of the matrices E(2) and
W(2), which are needed to solve the type-averaged bifurcation equation, equation (39). We start
by considering segmented chains, and apply the WCL and the IPL at a later stage.

Considering first the excluded volume part, we obtain from equations (6) and (36)

E (2)
τ,τ ′ = s2N 2Mτ lτMτ ′lτ ′(dτ + dτ ′), (50)

where τ, τ ′ ∈ {S, M} and s2 = −π2/8 is the second Legendre coefficient of | sin γ |. We
normalize E(2) with respect to its lower right element E (2)

M M , setting κ = (s2N 22l2
MdM)−1E(2).

Then taking the WCL, κ → κ̄ , we get

κ̄ =
[ M̄2

S P̃2
S d̃S M̄S P̃S

1
2 (1 + d̃S)

M̄S P̃S
1
2 (1 + d̃S) 1

]
. (51)

We note that there is no N -dependence in κ̄ .
Next, we calculate the elements of the 2 × 2-matrix W(2). There are two simplifying

observations which can be made for this system: (i) all bending potentials are the same
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(equation (43)) and then so are all the Boltzmann weights w
(2)

j, j ′ = w(2); (ii) the path Pk,m

from segment k to segment m can be formulated in terms of a simple sequence of increasing
numbers, i.e. Pk,m = {(k, k +1), (k +1, k +2), . . . , (m −1, m)} (for k < m and Pk,m = Pm,k ).
Consequently,

W (2)
m,k =

∏

( j, j ′)∈Pk,m

w
(2)

j, j ′

w
(0)
j, j ′

=
(

w(2)

w(0)

)|k−m|
= σ |k−m|, (52)

which defines σ . Therefore, we get, according to equation (37),

W (2)
τ,τ ′ = 1

Mτ Mτ ′

∑

k∈τ

∑

k′∈τ ′
σ |k−k′ |. (53)

Next, we define α = NW(2), in order to have a more compact notation, but also because the
rescaling with N is necessary in the IPL where the elements of W(2) diverge. The expressions
for the elements of α are

αS,S = N
N 2M2

S

N (MS+1)∑

m,m′=1

σ |m−m′ | − αS,M + αM,S

MS
− αM,M

M2
S

(54)

αS,M = αM,S = N
N 2MS

N (MS+1)∑

m=1

N∑

n=1

σ |m−(n(MS+1)− 1
2 MS)| − αM,M

MS
(55)

αM,M = N
N 2

N∑

n,n′=1

σ |n−n′|(MS+1) (56)

where we have (partly) expressed the elements in a recursive fashion. We note that all sums
above can be performed analytically. However, as we are mainly interested in the results in the
WCL for the spacers, we do not perform these computations here. In the WCL, σ becomes (to
first order in 1/β JS)

σ =
∫ 1
−1 dx P2(x) exp[β JSx]

∫ 1
−1 dx exp[β JSx]

→ 1 − 3(β JS)
−1, (57)

and therefore

σMS → (
1 − 3(β J )−1

)β JM̄S = exp
[−3M̄S

]
, (58)

where we have used limn→∞(1 + x
n )n = ex . As an example, we evaluate the summation in

equation (56) (over n and n′),

1

N
N∑

n,n′=1

σ |n−n′|(MS+1) → 1

N
N∑

n,n′=1

e−3M̄S|n−n′| = 1 + e−3M̄S

1 − e−3M̄S

(

1 − 2e−3M̄S

N
1 − e−3NM̄S

1 − e−6M̄S

)

.

(59)

For the summations over m, we note that these become integrals in the WCL,

1

NMS

N (MS+1)∑

m=1

→ 1

NM̄S

∫ NM̄S

0
dm̄, (60)

and finally, the contributions due to αM,M in equation (55) and those due to αM,M and αS,M

in equation (54) go to zero in WCL. Skipping the details of the evaluation of the remaining
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integrals, we immediately move on to the results, and equations (54)–(56) become, in the WCL,
α → ᾱ,

ᾱS,S = 2

3M̄S

(

1 − 1 − e−3NM̄S

3NM̄S

)

(61)

ᾱS,M = ᾱM,S = 2

3M̄S

(

1 − e− 3
2 M̄S

N
1 − e−3NM̄S

1 − e−3M̄S

)

(62)

ᾱM,M = 1 + e−3M̄S

1 − e−3M̄S

(

1 − 2e−3M̄S

N
1 − e−3NM̄S

1 − e−6M̄S

)

. (63)

Taking the IPL is trivial, given the explicit dependence on N , and the matrix ᾱ reduces to very
simple form in this limit,

ᾱ =
[ 2

3M̄S

2
3M̄S

2
3M̄S

1+e−3M̄S

1−e−3M̄S

]

. (64)

We now collect the results and reformulate the bifurcation equation, equation (39), in terms
of the newly defined κ̄ , ᾱ, η. In the WCL, c → c̄, it becomes

c̄ = −ηs2

4π
ᾱκ̄ c̄. (65)

As the problem is two dimensional, it has solutions

−ηs2

4π
= πη

32
= 2

/(
tr(ᾱκ̄) ±

√
tr2(ᾱκ̄) − 4 det(ᾱκ̄)

)
, (66)

with ‘tr’ and ‘det’ being the trace and determinant of matrices respectively. tr(ᾱκ̄) is always
larger than zero and det(ᾱκ̄) can be both positive and negative. Furthermore, it can be checked
as well that tr2(ᾱκ̄) � 4 det(ᾱκ̄) for this system, so that the eigenvalues are real. Consequently,
the physical bifurcation density is given by

η∗ = 64

π

/(
tr(ᾱκ̄) +

√
tr2(ᾱκ̄) − 4 det(ᾱκ̄)

)
, (67)

and, putting the mesogen order to one, c̄∗ = (
c̄S,∗, 1

)
, we get for the average order of the

spacers,

c̄S,∗ = (2(ᾱκ̄)(2,1))−1
(
(ᾱκ̄)(1,1) − (ᾱκ̄)(2,2) +

√
tr2(ᾱκ̄) − 4 det(ᾱκ̄)

)
, (68)

with (ᾱκ̄)(i, j) being the (i, j)th element of the matrix ᾱκ̄ .
As a check, but also to make contact with previous work, we mention a few limiting

cases of our system for which the results at the level of the bifurcation analysis are known.
In the case of zero-length spacers (by putting P̃S = 0), the polymers reduce to chains of
mesogens, coupled via zero-size hinges and coupling constants exp(−3M̄S). For this system,
the bifurcation density is given by equation (65) in [34], in which σ = exp(−3M̄S). Another
case is obtained when M̄S = 0, and the polymers reduce to long stiff rods of length N lM,
i.e. the original Onsager model. For this system, the bifurcation density was calculated by
Kayser and Raveché, η∗N = 32/π in [46]. The last limiting case is a bit less accessible. The
result for a homogeneous wormlike chain can be obtained by taking the limit where PS � lM,
or lM → 0 (so the mesogens disappear). This means that we have to rescale the density η in
terms of PS instead of lM. In this way, we reobtain the results for this case which are given
in [14, 34].
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3.3.2. Degree of order along the polymer. The degree of order of the individual segments
along the polymer at the bifurcation point can be calculated using equations (41) and (42). To
this end we first define the (primed) matrix α′

m,τ ′ = NW (2)
m,τ ′ . In the WCL, the discrete segment

label m becomes continuous and the M × 2-matrix α′ reduces to a set of 2 × 2-matrices ᾱ′:
α′

m,τ ′ → ᾱ′
τ,τ ′ (m̄), where m̄ ∈ τ . However, the difference between ᾱτ,τ ′ and ᾱ′

τ,τ ′(m̄) is that the
latter still depends on the label m̄ ∈ τ and as a consequence is not symmetric in the type labels.
The evaluation of the elements of ᾱ′ is similar to that of ᾱ, so we give them without further
comment,

ᾱ′
S,S(s̄, n) = 1

3M̄S

(
2 − e−3(s̄+(n− 1

2 )M̄S) − e−3((N−n+ 1
2 )M̄S−s̄)

)
(69)

ᾱ′
S,M(s̄, n) = e−3|s̄| + e−3(M̄S+s̄) 1 − e−3(n−1)M̄S

1 − e−3M̄S
+ e−3(M̄S−s̄) 1 − e−3(N−n)M̄S

1 − e−3M̄S
(70)

ᾱ′
M,S(n) = 1

3M̄S

(
2 − e−3(n− 1

2 )M̄S − e−3(N−n+ 1
2 )M̄S

)
(71)

ᾱ′
M,M(n) = 1 + e−3M̄S − e−3nM̄S − e−3(N−n+1)M̄S

1 − e−3M̄S
, (72)

where we have used m̄ = (n, s̄) with n ∈ {1 . . .N } the unit dependence and s̄ ∈
[− 1

2M̄S,
1
2M̄S] runs within a unit. In the case of infinite polymer length, both N and n (and

their difference, N − n) become infinite, and one readily sees which terms in equations (69)–
(72) drop out. In all cases the following relation holds:

ᾱ = 1

NM̄S

N∑

n=1

∫ 1
2 M̄S

− 1
2 M̄S

ds̄ ᾱ′(s̄, n). (73)

So, having solved the eigenvalue problem, equation (65), for η∗ and c̄∗, one can compute the
order along the polymer with

c̄′
∗ =

(
c̄′

S,∗(s̄, n)

c̄′
M,∗(n)

)
= −η∗s2

4π
ᾱ′(s̄, n)κ̄ c̄∗, (74)

where the normalization is again chosen such that the average mesogen order equals unity,
(1/N )

∑N
n=1 c̄′

M,∗(n) = 1.

3.4. Results

Having set up our formalism in the previous section, we are now in a position to present
results on the bifurcation density and the order along the polymer as a function of model
parameters. We first of all vary the spacer length, M̄S, as this is experimentally an accessible
parameter. We also look at the effect of increasing chain length, N , or equivalently the degree
of polymerization. The degree of order along the polymer at the bifurcation is plotted as well,
both for infinitely long chains (where we plot just one unit) and for finite lengths. The remaining
parameters are, unless stated otherwise, chosen to be P̃S = 0.3 and d̃S = 0. Our aim is not so
much to be exhaustive, but rather to bring out the salient features of our approach.

In figure 4 the bifurcation density (left) and average spacer order (right) are plotted as
a function of spacer length, M̄S. When M̄S = 0, the chain is exactly a sequence of N
rigidly connected mesogens of length lM, or equivalently one long mesogen of length N lM.
Consequently, η∗(M̄S = 0) = 32/πN and c̄S,∗(M̄S = 0) = 1. Increasing M̄S, the
mesogens become more decoupled from each other, and the bifurcation density goes up.
(Except for N = 1, as in this case there is only one mesogen per molecule. Here increasing
the spacer length is equivalent to increasing the dimensions of the molecule and as a result the
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Figure 4. The I–N bifurcation density (left) and the degree of order of the spacers at the bifurcation
(right) as a function of spacer length, M̄S, for various values of the polymer length, N . The
parameters are P̃S = 0.3 and d̃S = 0. The values for the polymer lengths are N = 1 (dashed
line), N = 2 (dotted line), N = 4 (dash–dotted line) and N = ∞ (solid line). It can be checked
that at M̄S = 0, η∗ = 32/πN (the rigid rod result). The average order of the mesogens is set equal
to unity.

Figure 5. The dependence of the bifurcation density (left) and the degree of order of the spacers at
the bifurcation (right) on the length of the polymer for various spacer lengths. The parameters are
P̃S = 0.3, d̃S = 0. The spacer lengths are M̄S = 0.2 (dashed line), M̄S = 0.5 (long dashed line),
M̄S = 1 (dotted line), M̄S = 5 (dash–dotted line) and M̄S = 10 (solid line).

bifurcation density goes down.) When the dimensionless spacer length roughly exceeds three,
the mesogens are totally decoupled. Going to even larger spacer lengths only increases the
overall dimensions of the molecules and, therefore, η∗ goes down slowly. This is hardly visible
in figure 4, but this effect is more pronounced for d̃ �= 0. The average order (figure 4 (right)) of
the spacers decreases with increasing M̄S, as the mesogen concentration in the chain effectively
gets diluted more and more and the resulting orientational ordering field on the spacers within
the chain decreases.

In figure 5, the dependence of the bifurcation density (left) and the spacer order (right) on
the length of the polymer is plotted for a range of values of M̄S. For N = 1 (so at logN = 0)
there is only one mesogen, so the longer the spacer (=tails) the lower the bifurcation density.
However, increasing N long spacers yield disconnected mesogens, whereas in the case of short
spacers the mesogens are coupled more tightly. Consequently, the curves for short spacers
drop to much lower values than for long spacers. However, as we mentioned before, when the
spacer length exceeds a certain value the mesogens are already disconnected and longer spacers
correspond to bigger molecules and thus a lower bifurcation density: therefore, the curve for
M̄S = 10 lies below that of M̄S = 5 in figure 5 (left). In figure 5 (right), the spacer order
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Figure 6. Order along the spacers for infinitely long polymers, N → ∞, and only one spacer
is shown. The parameters are P̃S = 0.3, d̃S = 0. and M̄S = 0.1 (top), M̄S = 1 (middle) and
M̄S = 10 (bottom). In this case, we use a label s̄ ∈ [0,M̄S], although this profile technically
consists of two consecutive half units. The mesogens are located at s̄ = 0 and M̄S and have order
equal to 1.

simply increases with N because the effect of the free (and necessarily less ordered) chain ends
decreases. This effect is more pronounced for shorter spacer lengths which are already more
ordered than longer spacers in the first place.

The order along infinitely long polymers is plotted in figure 6. The top (very short spacers)
and bottom plots (very long spacers) are extreme cases; the middle plot is for spacers of
intermediate lengths. Starting with the very long spacers, we see that the order of spacer right
next to the mesogens (at s̄ = 0) is the same as the mesogen order (=1), but when moving away
from the mesogens it ‘relaxes’ to a plateau. For intermediate lengths, the same happens, but
now the relaxation tails seem to overlap, and a plateau region is no longer identified. For small
lengths, the shape of the order profile is the same as for intermediate lengths but the scale of
variation of the order is much smaller. In this case the spacers are basically forced to adopt the
order imposed by the neighbouring mesogens.

Finally, in figure 7, we have plotted the order along a polymer with a finite number N = 13
of repeat units. Three different spacer lengths have been considered and chosen such that they
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Figure 7. Order along the chain for a finite-length polymer, N = 13. The black dots are the
mesogens and the lines are the spacers. The parameters are P̃S = 0.3, d̃S = 0 and M̄S = 0.2 (top),
M̄S = 0.5 (middle) and M̄S = 1 (bottom). The label m̄ ∈ [0,NM̄S], the mesogens (black dots)
are located at m̄ = (n − 1

2 )M̄S with n ∈ {1, . . . ,N } and the average order of the mesogens is unity.

illustrate the effect of the finite length of the polymer on the order profile. In general, for
homogeneous linear LC polymers it is a well known result that in the nematic phase the order at
the free ends is lower (by exactly a factor of two for infinitely long ones) than in the middle. In
the case of the top plot, the spacers are quite short, and the influence of the free ends propagates
out several units (about five or six) to the middle of the chain. As a result the spacers in between
the mesogens are ordered almost equally strongly as the neighbouring mesogens themselves.
In the middle and the bottom plot, the spacers are longer, and therefore the number of units
that ‘feel’ the ends is smaller (two or three). Simultaneously, the spacers can adopt a more
disordered conformation.

4. Conclusion and discussion

In section 2 we have developed a formalism for dealing with a very general class of liquid-
crystalline polymers composed of rigid segments. The main virtues of the approach are its
ability to deal, without any additional approximations, with branched molecular structures and
compositional heterogeneity. Moreover, we show through a formal bifurcation analysis that
many interesting properties relating to the ordering transition can be extracted from the theory
in an analytical fashion. This is illustrated in section 3, where we treat a simple model for a
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main-chain LC polymer, consisting of mesogenic blocks connected by more flexible spacers.
The resultant theory has a limited number of parameters (three for infinitely long polymers or
four for finite ones). Noteworthy results are (i) the dependence of the bifurcation density on the
spacer length M̄S, showing the steep increase for small values of this length, thus rationalizing
the experimentally established fact that sufficiently long spacers are necessary to decouple the
mesogens, (ii) perhaps the first calculations of the distribution of the degree of order along
such structured chain molecules and (iii) a proof that N–N transitions are not possible for this
system.

In order to compare our work to earlier approaches, we first turn to the work of Yurasova
et al [22–24], which treats a similar molecular geometry, but now composed of segments
interacting through a Maier–Saupe potential, and hence thermally driven. They use the so-
called spherical approximation to analytically compute the free energy for infinitely long
polymers, resulting in a theory with four parameters. The appearance of an additional
parameter, compared to our model in the same case, is due to the fact that for an excluded
volume interaction the dimensions of the two different segments fully fix the interactions (MM,
MS and SS), whereas in the case of Maier–Saupe-like theories a separate energetic parameter
has to be specified for each of the possible interactions. Their results on the dependence of the
transition temperature on spacer length, with a minimum for a certain spacer length, flanked by
a steep increase for smaller spacer lengths and a very shallow increase for larger spacer lengths,
are very similar to ours (see figure 4 (left)), if one takes into account that the temperature
translates into the inverse density in the mapping between the two formalisms. A somewhat
unphysical result they obtain is that for large spacer lengths the order parameter at the phase
transition of the spacers is larger than that of the mesogens, suggesting unrealistically that, in
that case, the spacers are driving the transition. This artefact is probably due to the fact that
their model effectively assigns an orientational interaction energy per unit length to the spacers
that unless some form of scaling is applied will outstrip the contributions of the mesogens, that
remain fixed in size. A similar approach was followed by Wang and Warner [25], who also use
a Maier–Saupe type theory with four parameters to describe the same system of infinitely long
polymers. They write down an exact, at least as far as the intra-molecular degrees of freedom
are concerned, formulation of the partition function. This partition function is then expanded
in terms of spheroidal wavefunctions, of which they keep only the ‘ground state’ contribution.
In the resulting stationarity equations contributions do appear which are related to the fact that
the components are embedded in a polymer. In a way, this is a first-order correction, with
respect to the internal degrees of freedom of the polymer, to a pure decoupled Maier–Saupe
type mean field theory. They do, however, report a strong decrease of transition temperature
for small spacer lengths, which is consistent with the decrease of the bifurcation density shown
in figure 4.

In the present work we have limited ourselves to a bifurcation analysis of the stationarity
equation (12). In principle it is of course possible to solve them numerically, as we have
done for linear homopolymers in [34] and side-chain polymers in [35]. The rationale for
doing so however is slight. We have already shown in section 2 that there are no nematic-
to-nematic phase transitions within the present theory (equation (20)). This is also consistent
with the results of [22–25]. So far, N–N transitions for main-chain LC polymers have only
been discussed for lattice models [18–20, 51]. We thus expect that the mesogens as well as
the spacers only exhibit a smooth increase of ordering on an increase of the density in the
nematic phase. Of course, an explicit numerical calculation would be required to obtain the
coexistence densities, but experience shows that they are typically within a few per cent of
the analytically determined bifurcation density. Consequently, we have not performed these
numerical calculations for this system.
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The model of a main-chain LC polymer is of course extremely simplified. There are several
aspects that could be considered within the framework of our theory. One is compositional
randomness, as occurs in copolymers in which neither the mesogens nor the spacers have
constant lengths [1]. Such heterogeneity is readily incorporated within our theory. From a
practical point of view, however, the interesting aspect of random copolymers is that they
reduce the tendency to crystallize and enhance glassy behaviour. This effect lies far outside
the scope of the present approach. Another issue is polydispersity; due to the way these main-
chain LC polymers are synthesized they are inevitably polydisperse in chain lengths [1, 2, 6].
Polydispersity of this type can also easily be included in the present approach, but the effect of
polydispersity in chain lengths is only expected to be significant for relatively short polymers.
As a last issue we address the so-called odd–even effect. In many experimental systems [1, 2, 6],
it is often observed that spacers consisting of an even number of CH2 have significantly higher
transition temperatures than those with an odd number of CH2-groups. In order to model
these effects we would need to consider next-nearest-neighbour interactions along the chain
to include the different rotational-isomeric states. This is in principle possible, as our approach
can be generalized to arbitrary finite ranged interactions along the chain, albeit at the cost of
increased complexity.

Finally, spatially inhomogeneous (i.e. smectic) phases are extremely common for LC
polymers [1, 2, 6]. Indeed, in principle one could check the stability of the isotropic phase with
respect to smectic perturbations within our theory as well. However, the increase in complexity
is enormous, as we now need to couple the molecular conformation to spatial density wave,
which varies significantly (one expects the dominant wavelength to be comparable to the length
of the mesogenic units) over the scale of the polymer as a whole. Nevertheless, the relevant
driving mechanisms for inhomogeneous phases are present in this system of different-size hard
anisotropic components; hard rods are able to form smectic phases [52] and it has e.g. been
shown that binary mixtures of thick and thin hard rods tend to demix already in the isotropic
phase due to (relatively) unfavourable interactions between the thick and thin rods [53, 54].
Purely entropic interactions are thus expected to be sufficient to drive smectic phase formation,
with its concomitant microscale demixing between spacers and mesogens, in LC polymers (see
e.g. [55]). Therefore, the problem of solving the isotropic or nematic-to-smectic bifurcation
equations, either analytically or numerically, remains an open challenge.
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[46] Kayser R F Jr and Raveché H J 1978 Phys. Rev. A 17 2067
[47] Mulder B 1989 Phys. Rev. A 39 360
[48] Blaak R and Mulder B M 1998 Phys. Rev. E 58 5873
[49] Wessels P P F 2002 Flexible theories for flexible molecules PhD Thesis FOM Institute for Atomic and Molecular

Physics (AMOLF) The thesis can be found in a digital form on www.amolf.nl. Printed copies can be obtained
from the library of AMOLF, library@amolf.nl.

[50] Flory P J 1989 Statistical Mechanics of Chain Molecules (Munich: Hanser)
[51] Semenov A N and Khokhlov A R 1988 Sov. Phys.—Usp. 31 988
[52] Mulder B M 1987 Phys. Rev. A 35 3095
[53] Sear R P and Jackson G 1995 J. Chem. Phys. 103 8684
[54] van Roij R and Mulder B M 1996 Phys. Rev. E 54 6430
[55] Wessels P P F and Mulder B M 2004 Phys. Rev. E 70 031503

http://dx.doi.org/10.1002/macp.1978.021791018
http://dx.doi.org/10.1016/0378-4371(81)90148-5
http://dx.doi.org/10.1016/0378-4371(82)90199-6
http://dx.doi.org/10.1088/0305-4470/18/15/025
http://dx.doi.org/10.1088/0305-4470/19/11/029
http://dx.doi.org/10.1021/ma50005a013
http://dx.doi.org/10.1002/marc.1982.030031214
http://dx.doi.org/10.1021/ma00141a014
http://dx.doi.org/10.1063/1.476779
http://dx.doi.org/10.1016/0032-3950(90)90007-S
http://dx.doi.org/10.1016/0032-3861(93)90500-A
http://dx.doi.org/10.1016/0378-4371(79)90132-8
http://dx.doi.org/10.1080/00268979300102261
http://dx.doi.org/10.1103/PhysRevE.51.5891
http://dx.doi.org/10.1021/ma971105y
http://dx.doi.org/10.1016/S0010-4655(00)00187-9
http://dx.doi.org/10.1021/ma9810565
http://dx.doi.org/10.1016/S1089-3156(00)00017-9
http://dx.doi.org/10.1080/026782999204075
http://dx.doi.org/10.1081/SMTS-120026964
http://dx.doi.org/10.1209/epl/i2003-00186-5
http://dx.doi.org/10.1080/00018737900101365
http://dx.doi.org/10.1088/0034-4885/55/8/003
http://dx.doi.org/10.1002/1521-3919(20010101)10:1<1::AID-MATS1>3.0.CO;2-D
http://dx.doi.org/10.1016/0378-4371(76)90045-5
http://dx.doi.org/10.1021/ma00139a014
http://dx.doi.org/10.1088/0305-4470/20/3/033
http://dx.doi.org/10.1103/PhysRevA.17.2067
http://dx.doi.org/10.1103/PhysRevA.39.360
http://dx.doi.org/10.1103/PhysRevE.58.5873
http://www.amolf.nl
http://www.amolf.nl
http://www.amolf.nl
http://www.amolf.nl
http://www.amolf.nl
http://www.amolf.nl
http://www.amolf.nl
http://www.amolf.nl
http://www.amolf.nl
http://www.amolf.nl
http://www.amolf.nl
http://www.amolf.nl
http://library@amolf.nl
http://library@amolf.nl
http://library@amolf.nl
http://library@amolf.nl
http://library@amolf.nl
http://library@amolf.nl
http://library@amolf.nl
http://library@amolf.nl
http://library@amolf.nl
http://library@amolf.nl
http://library@amolf.nl
http://library@amolf.nl
http://library@amolf.nl
http://library@amolf.nl
http://library@amolf.nl
http://library@amolf.nl
http://dx.doi.org/10.1070/PU1988v031n11ABEH005643
http://dx.doi.org/10.1103/PhysRevA.35.3095
http://dx.doi.org/10.1063/1.470711
http://dx.doi.org/10.1103/PhysRevE.54.6430
http://dx.doi.org/10.1103/PhysRevE.70.031503

	1. Introduction
	2. General LC heteropolymers
	2.1. Model and formalism
	2.1.1. Free energy functional and stationarity equation.
	2.1.2. Local fields.
	2.1.3. The isotropic and nematic phases.

	2.2. Bifurcation analysis
	2.2.1. Bifurcation analysis at the segment level.
	2.2.2. Bifurcation analysis at the type level.


	3. Main-chain LC polymers
	3.1. Introduction
	3.2. Model
	3.2.1. Model parameters.
	3.2.2. Wormlike chains and infinite polymers.

	3.3. Bifurcation analysis
	3.3.1. Bifurcation density.
	3.3.2. Degree of order along the polymer.

	3.4. Results

	4. Conclusion and discussion
	Acknowledgments
	References

